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Improved alternating gradient transport and focusing of neutral molecules
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Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of
electric field gradients that focus in one transverse direction while defocusing in the other. We show by calcu-
lation and numerical simulation, how one may greatly improve the alternating gradient transport and focusing
of molecules. We use a new optimized multipole lens design, a FODO lattice beam transport line, and lenses to
match the beam transport line to the beam source and the final focus.

We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses.
We describe a simple lens optimization procedure and derive the equations of motion for tracking molecules
through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source
beam of methyl fluoride molecules 15 m from its source and focuses it to 2 mm diameter. We calculate the
beam transport line acceptance and transmission, for a beam with velocity spread, and estimate the transmitted
intensity for specified source conditions. Possible applications are discussed.

PACS numbers: 39.10.+j, 33.15.Kr, 07.77.Gx

I. INTRODUCTION

A polar molecule has an intrinsic separation of charge on
which an electric field gradient exerts a force. The force, Fx,
in the (transverse) x direction is:

Fx
��� ∂W

∂x
��� ∂W

∂E
∂E
∂x

(1)

where W is the potential energy of the molecule in an electric
field (Stark effect) of magnitude E ��� E2

x � E2
y � 1 	 2; and sim-

ilarly for the force, Fy in the y direction. The force and gra-
dient are in opposite directions (weak-field seeking) for rota-
tional states that become less tightly bound in an electric field
(∂W 
 ∂E � 0), while the force and gradient are in the same di-
rection (strong-field seeking) for rotational states that become
more tightly bound in an electric field (∂W 
 ∂E � 0). The J =
0 state is always strong-field seeking and all rotational states
become strong-field seeking in the limit of strong electric field
as shown in Fig. 1.

Focusing a beam of molecules, traveling in the z direction,
is achieved using static two-dimensional (x  y) electric field
gradients. We neglect end field effects and assume Ez

� 0
inside the focusing lenses. Molecules in weak-field seeking
states can be focused, in both directions, using quadrupole
and/or sextupole fields that have a minimum, in the electric
field, in both directions. Molecules in strong-field seeking
states can be focused in only one transverse direction, while
being defocused in the other, because it is not possible to have
a maximum in the electric field in both dimensions (in free
space). Alternating gradient lenses are used to transport and
focus molecules in strong-field seeking states. While alter-
nating gradient focusing has been used for molecules [1–7]
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and neutral atoms [8], it has been neither as successful, nor
as widely used, as has quadrupole and sextupole focusing for
molecules in weak-field seeking states [7, 9].

In this paper we show, by calculation and numerical simu-
lation, how one may greatly improve the alternating gradient
transport and focusing of molecules by optimizing the lens
field geometries.. We use this optimized multipole lens de-
sign, in a FODO lattice beam transport line and use lenses to
match the beam transport line to the beam source and the final
focus.

The remainder of this paper is organized as follows: Section
II discusses alternating gradient focusing, transport lattices,
matching lenses, and linear optics. Section III derives the for-
mulae for designing linear focusing elements and presents ex-
amples of lenses. Section IV derives the equations for molecu-
lar beam transport and models both a simple 30 m-long FODO
lattice and a complete 15 m-long transport line with entrance
and exit matching lenses. Section IV G estimates the intensity
of a methyl fluoride jet-source beam, transported through a
beamline and focused. Section V discusses the use of strong-
field seeking states, and possible applications of alternating
grading focusing and transport through very long transport
lines.

II. ALTERNATING GRADIENT BEAM TRANSPORT AND
FOCUSING

A beam of charged particles can be focused and transported
over almost unlimited distances by alternating F and D type
magnetic quadrupole lenses. The F type lens focuses the beam
in the horizontal (x) direction while defocusing it in the verti-
cal (y) direction. The D type defocuses the beam in the hori-
zontal direction while focusing it in the vertical direction.

A complete alternating gradient transport line begins with
a beam source whose output is optically matched, by lenses,
into the acceptance of a transport section which, in turn is
matched, by lenses, to a final focus. The final focus can be,
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FIG. 1: Energy levels of low-lying rotational states of a diatomic
or symmetric-top molecule in an electric field (Stark effect). The
levels were calculated using the rigid rotor model. The horizontal
axis is in dimensionless units of ω � deE

�
B, where de is the electric

dipole moment, E the electric field, and B the rotational constant.
The vertical axis is in units of B. Energies for small ω are shown
in (a) and energies for large ω in (b). The potential energy of the
molecule, W , is the change in energy from zero electric field and
for very large ωW � deE. The levels that descend are strong-field
seeking (see text). For the J � 0 state of methyl fluoride (CH3F), in
the K = 0 state, ω � 1 at 2.78 MV/m. For the J � 0 state of CsF,
ω � 1 at 0.135 MV/m.

for example, at an experimental target or at a matching point
for injection into a (storage) ring lattice. A complete transport
line, for molecules, starting with a jet source and skimmer, is
shown in Fig. 2. For long-distance beam transport, the lens
system providing the highest beam acceptance and requiring
the lowest focusing strength, is a lattice of identical FODO-
cells, in which the F/D- lenses are separated by drift spaces
(O).

To match the molecular beam source to the transport line,
and to match the transport line to the final focus, we use dou-
blet (FD/DF) and triplet (FDF/DFD) type lens configurations.
These lens configurations generally require higher focusing
strengths than do the FODO cells. Doublets are typically
used for asymmetric focal points (unequal x and y dimensions)
while triplets are used for symmetric ones. In the F/D doublet,

a net focusing in x and y occurs because particles first focused
in x are, in the second element, closer to the center axis and
therefore less defocused. Particles first defocused in y are,
in the second element, further from the axis and thus more
strongly focused.

In all lenses, linear focusing is needed for optimum opti-
cal properties. Linear focusing requires that the force in each
direction be linearly proportional to the displacement in that
direction ( � Fx 
 x � � constant and � Fy 
 y � � constant), and in-
dependent of the displacement in the other direction (uncou-
pled motion). Strong non-linearities in focusing elements will
result in loss of beam, generation of beam halo, and growth
in the transverse emittance (the product of the angular diver-
gence and the spatial dimension) producing larger beam sizes.

III. LINEAR OPTICS

A. Potential energy of a molecule in an electric field

To determine the lens shape that will produce the most lin-
ear force on the molecule, we need ∂W 
 ∂E for Eq. (1). This
quantity will change with the J �� mJ � rotational state and elec-
tric field strength. If a number of rotational levels have a sim-
ilar ∂W 
 ∂E, then one lens design will be nearly optimum for
all of them. In the limiting case of a strong electric field (large
ω in Fig. 1 ), ∂W 
 ∂E � � de.

For polar molecules in weaker fields, we calculate the in-
teraction energy, in the rigid rotor approximation, following
the approach of von Meyenn [10]. The Hamiltonian operator
is H � BJ2 � deE cosθ where B is the rotational constant, and
the direction cosine matrix elements, which couple (J, mJ)
with (J � 1, mJ) and (J � 1, mJ), are taken from Townes and
Schawlow [11]. We diagonalize the matrix for terms through
J � 30. The first few levels are shown in Fig. 1. As ω � deE 
 B
and B determine the Stark effect for each J �� mJ � , it is straight
forward to construct a simple function for the Stark effect for
any J �� mJ � . For the J � 0 state of a diatomic molecule or sym-
metric top (K = 0) molecule, a satisfactory approximation [12]
is:

W � E � � C1ω2B
1 � C2ω

� C1d2
e E2

B � C2deE
(2)

with C1
� � 0 � 2085 and C2

� 0 � 2445. This expression works
best for small and intermediate values of ω.

From Eq. (2), for the J � 0 state the field derivative of the
potential is:

∂W
∂E
� W

E

�
2B � C2deE
B � C2deE � (3)

Similar expressions may be found for other rotational levels.
A perturbation expression for W can be used for rotational
states in weak electric fields [11]. In some applications, using
∂W 
 ∂E from either the strong field limit or the weak field
limit will be sufficient to design a linear lens.

Finally, we note that all atoms and molecules, including
nonpolar molecules, are polarizable with an interaction energy
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FIG. 2: Schematic diagram of an alternating gradient beam transport line for molecules. It consists of a jet source and skimmer, beam matching
optics, FODO lattice, and final focus optics.

Wα
� � 1

2 αE2, where α is the dipole polarizability [13, 14].
For laboratory electric fields this interaction is much smaller

than the interaction with a molecular electric dipole moment,
but it can be used to focus [8] or decelerate atoms [15].

B. Electric field gradient of a focusing lens

Any lens electrostatic potential Φ can be expressed as the following multipole expansion in cylindrical coordinates r θ:

� Φ � r θ � � E0r0 � ∞

∑
n � 1

bn

n � r
r0 � n

cos � nθ � �
∞

∑
n � 1

an

n � r
r0 � n

sin � nθ ���
where E0 is the central field [E � E0

� b2
1 � a2

1 � 1 	 2], r0 is a scaling length, and bn and an are the dimensionless constants of the 2n-
pole strengths for normal (skew) elements.

Setting bn
� an for simplicity, converting to Cartesian coordinates, and retaining only the a1, a3, and a5 terms (see section

III C), the lens potentials for normal multipoles are:

� ΦN
� x  y � � E0x

�
a1 � a3

� x2 � 3y2 �
3r2

0
� a5
� x4 � 10x2y2 � 5y4 �

5r4
0 � (4)

or for skew multipoles are :

� ΦS
� x  y � � E0y

�
a1 � a3

� 3x2 � y2 �
3r2

0
� a5
� 5x4 � 10x2y2 � y4 �

5r4
0 � (5)

where E0 is the field on axis for a1
� 1.

Both of these potentials give the same total electric field (E ��� ∇Φ).

E � x  y � � � E2
x � E2

y � 1 	 2 � E0

�
a2

1 � 2a1a3
� x2 � y2 �
r2

0
� a2

3
� x4 � 2x2y2 � y4 �

r4
0

� 2a1a5
� x4 � 6x2y2 � y4 �

r4
0

� � � � � 1 	 2
(6)

which has the electric field gradients:

∂E
∂x
� 2a3E2

0

r2
0

Gxx
E

∂E
∂y
��� 2a3E2

0

r2
0

Gyy

E
(7)

where

Gx
� x  y � � a1 � a3

� x2 � y2 �
r2

0
� 2a1a5

� x2 � 3y2 �
a3r2

0
� � � �

Gy
� x  y � � a1

� a3
� x2 � y2 �

r2
0

� 2a1a5
� 3x2 � y2 �
a3r2

0
� � � � (8)

C. Force on the molecule due to an electric field gradient

The force on a polar molecule in the x or y direction can
now be calculated using Eq’s. (1, 7, and 8) with a suitable
expression for ∂W 
 ∂E from section III A.

Non-linear forces, inside the focusing lenses limit the maxi-
mum beam size that one can transport without suffering beam
losses, emittance (size) growth, and beam halo. Non-linear
forces generally arise from higher-order multipole compo-
nents of the lens electrostatic potential. Cylindrical electrodes,
which are two-wire field lenses (with r0

� half-gap), shown in
Fig. 3 (a), have long been used to focus molecules in strong-
field seeking states [1–7]. They contain skew multipoles of
all odd orders and of equal strengths ( a1

� 1, a3
� � 1,
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FIG. 3: Equipotentials (truncated) in x and y of skew F lenses. The
actual electrode can be fabricated from any set of equipotentials and,
if dimensions are in mm, they match lenses used in the examples
in Section IV. A two-wire field lens (with multipole components:
a1 � 1, a3 ��� 1, a5 � 1 ����� ) is shown in (a). An optimized multipole
lens (with multipole strengths a1 � 1, a3 ��� 1, a5 � 0) is shown in
(b). The lens in (b) is designed to focus in the strong field limit.

a5
� 1 � � � ). As we will see below, its strong decapole field

(a5
� 1) reduces the area of the lens over which the focusing

is linear (dynamic aperture). A beam transport line using these
lenses will be limited to a smaller diameter beam compared to
a similar transport line using optimized multipole lens such as
the one shown in Fig. 3 (b).

To produce a larger linear region, than that of the two-wire
field lens, we try to limit the multipole fields to those that are
essential for the optics. We include a dipole field (a1) to give
a non-zero field on axis, without which strong-field seeking
molecules defocus in both transverse directions; a sextupole
field (a3) to provide the linear focusing force (of order r1); and
a decapole field (a5) to correct the non-linear forces (of order
r3) produced by the sextupole field. We omit the quadrupole
field (a2), because it bends the beam, and we omit the octupole
field (a4), because it introduces stronger non-linear forces (of
order r2) than those of the sextupole/decapole fields. All other
multipole strengths are set to zero. In a real lens, however,
the electrodes may be truncated equipotentials, with the con-
sequence that small residual higher order multipoles will re-
main.

Since the lens potentials, as defined by Eqs. (4, 5), have
two free parameters, we chose a1

� 1, making E0 the central
field and we choose � a3 � � 1, making it easier to compare the
optimized multipole lens to a two-wire field lens. The remain-
ing choice is the decapole field strength a5, which we use to
optimize the lens optics. We do this in two ways: first by cal-
culating, for specific molecules, the forces Fx and Fy inside a
lens and comparing their linearity in x and y for different a5,
and second, in section IV, by simulation of beams in model
transport lines.

If we calculate the horizontal force, Fx, on a molecule
whose potential energy is W � � deE (strong field limit), we
find that it is most linear on-axis (y � 0) for no decapole field
(a5
� 0). For this example, the constant-force contours for

Fx in the x  y plane are shown, for the two wire field lens, in
Fig. 4 (a) and, for the zero-decapole lens, in Fig. 4 (b). The
zero decapole lens is seen to have far better linearity than the
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FIG. 4: Contour plots of the force in the x direction (Fx), on a
molecule inside a lens, as a function of x and y position. The lines
are contours of equal Fx in arbitrary units. In this example we use the
large Stark effect limit (W ��� deE) and r0 � 6 mm. (a) shows Fx for
a two-wire field lens. (b) shows Fx, for an optimized multipole lens
(a5 = 0). A lens that was completely linear in Fx would have vertical
contour lines with uniform spacing.

two-wire field lens. (This is also true for Fy which is not shown
here.) In a similar way, we find that the optimized multipole
lens outperforms the two-wire field lens in the low electric
field limit (quadratic Stark effect), where the most linear field
on axis has a5

��� 1
2 .

D. End effects

Real lenses have finite length and the two-dimensional
fields inside become three-dimensional fields at the ends.
There are three effects. First, the z-component of the field
gradient affects the transverse motion. This will be small if
the lens aperture is small compared to the physical length of
the lens.

Second, the lens field acts over a distance that is different
than the physical length of the electrodes because of (extend-
ing) fringe fields at the ends. For linear design optics we ap-
proximate the real lens by a lens of constant central field E0
over an effective length, different than the physical length of
the lens. The effective length is determined by integrating the
actual central field (found by numerical calculation or mea-
surement) through the lens including the ends and dividing by
E0.

Third, the z-component of the electric field gradient, present
at the ends of the lens, has an effect on the z-component ( lon-
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gitudinal) velocity. The non-relativistic Hamiltonian (neglect-
ing gravity) for a molecule of mass m and total velocity v is:
H � 1

2 mv2 � W . The Hamiltonian is conserved if the electric
field is static. Consequently, a molecule in a strong-field seek-
ing (weak-field seeking) state will gain (lose) kinetic energy
entering the lens and then lose (gain) the same amount of ki-
netic energy upon exit [15, 16]. For the central (x � y � 0)
trajectory, the longitudinal velocity, vzE , of the molecule, in
the lens is:

v2
zE
� v2

z0
� W 
 2m

where vz0 is the velocity of the molecule in the drift spaces.
For most thermal or jet-source molecules in laboratory electric
fields, the change in velocity is a small effect. (A beam of
560 m/s methyl fluoride molecules in the J � 0 state increases
its velocity by 0.2 m/s upon entering an electric field of 10
MV/m.)

IV. BEAM TRANSPORT

A. Equations of motion

To track the trajectories of molecules passing through com-
binations of lenses, we use the transverse nonlinear equations
of motion for a molecule traveling in the z direction, given
from Eq’s. (1, 7, 8):

x
� �
� 2a3

r2
0

E2
0

mv2
ZE

Gxx
E

∂W
∂E
� 0

y
� � � 2a3

r2
0

E2
0

mv2
ZE

Gyy

E
∂W
∂E
� 0 (9)

with trajectory gradients defined as x
� � dx 
 dz � vx 
 vZE and

y
� � dy 
 dz � vy 
 vZE .

We start the design optics using completely linear lenses
(Gx
� Gy

� 1, and E � E0), for which Eq. (9) reduces to:

x
� �
� K0x � 0 y

� � � K0y � 0 (10)

where K0 is the lens linear focusing strength:

K0
� 2a3

r2
0

E0
mv2

ZE

∂W
∂E

� � 2a3
r2
0

deE0
mv2

ZE
for W ��� deE

� � a3
r2
0

αE2
0

mv2
ZE

for Wα
��� 1

2
αE2

� 2a3
r2
0

d2
e E2

0
mv2

ZE

C1
�
2B � C2deE0 ��

B � C2deE0 � 2 for J � 0, from Eq. 2 (11)

For a molecule in a strong-field seeking state (∂W 
 ∂E � 0),
the lens will focus in the x direction (F-lens) for a3 � 0, and
focus in the y direction (D-lens) for a3 � 0. For a molecule
in a weak-field seeking state (∂W 
 ∂E � 0) the F and D direc-
tions are reversed. The lenses can also be used to focus atoms
(∂Wα 
 ∂E � � αE) which, in their ground states, are always
strong-field seeking.

The linear design optics will determine the lens focusing
strength K0. Then the choice of scaling radius r0, will give
the required lens field E0 from Eq. (11). Small r0 allows us
to use low electric fields but, as seen from Eq’s. (6,8), large r0
is needed for increased linearity. The value of r0 chosen will
then depend on the maximum electric field strength and the
beam size to be transported.

B. Example of methyl fluoride

For a realistic beam transport simulation, we assume a
beam of methyl fluoride (CH3F), in the J � 0 rotational state,
having a longitudinal velocity vZ0

� 560 m/s. (This is the
approximate velocity of a beam produced by seeding methyl
fluoride in an argon jet source with a reservoir temperature of
300 K (See section IV G) . The electric field derivative of the
potential energy (of the J � 0 state), is given by Eq. (3) with
de
� 6 � 25 � 10 � 30 J/V/m (1.86 Debye) and rotational constant

B � 1 � 76 � 10 � 23 J (0 � 88 cm � 1).

To study long distance transport, we model a FODO lattice
consisting of a sequence of identical F and D lenses separated
by drift spaces (O). Then, to study a complete beam line, we
add an upstream lens section, to match the beam from the jet
source into the FODO lattice, and a downstream section for a
final focus of the beam (see Fig. 2).

C. FODO lattice

We chose a simple FODO lattice consisting of identical
FODO cells (see Section II). The optics of a FODO cell starts
in the center of an F lens (or D lens) and ends at the center
of the next F lens (or D lens). At the ends of the FODO cell
the beam is at a waist (defined as zero slope in the beam size)
with a maximum size in one plane and a minimum size in the
other plane.

For this study, we use 10 cm-long F/D lenses with scaling
length r0

� 6 mm and separated by 40 cm drift spaces, giving
a FODO cell length of 100 cm. This design leaves 80 % of
the cell unfilled. It is economical to build but does not have
as large an acceptance as designs that filled more of the lattice
(see section V).

In a FODO lattice the motion of a particle is periodic in
phase-space. The phase-advance measures how far along the
period it has proceeded from its initial starting point. The
transverse linear optics are characterized by the phase advance
in the FODO cell µc (under focussed 0 � µc � π over focused).
For our cell we choose µc

� π 
 3 rad for which all particles
return to their initial phase-space position after 6 FODO cells.
This specifies a central field of E0

� 3 � 23 MV/m, which is not
close to breakdown, as well as, a beam size that is nearly the
minimum possible.
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D. Modeling beam transmission

1. beam distribution in phase space

We take the molecular beam to be continuous (unbunched)
and monoenergetic, in which case, it is completely specified
by its density in the (x  x �  y  y �

) phase space (distribution func-
tion). The beam size in a transport line depends, not on the
density, but, on the four-dimensional volume (V4D) occupied
by the beam. This can be defined, experimentally, in a num-
ber of ways: (a) the volume containing some fraction of the
beam, (b) the volume calculated from the root-mean-square
(rms) beam sizes, or (c) the volume defined by a set of col-
limators. These four dimensional volumes can be related to
an equivalent theoretical distribution function of Kapchinsky
and Vladiminsky (KV) [17]. With the KV distribution func-
tion, we can calculate the linear focusing beam sizes (ax  ay)
along the beam transport line and, in so doing, model the de-
sign optics.

The KV distribution consists of a uniform density of parti-
cles on a hyper-ellipsoid in four-dimensional phase space. At
a beam waist (a

� �
x
� a

� �
y
� 0), the hyper-ellipsoid is given by:

� x
ax � 2

� � x
�

ax � � 2

� � y
ay � 2

� � y
�

ay � � 2 � 1 (12)

and has the volume, VKV
� 1

2 π2axax � ayay � . Typically we have
beam waists at the beam source (minimum), at any focus
(minimum), and inside the focusing lenses (minimum or max-
imum).

The beam sizes along the beam transport line are given by
the uncoupled envelope equations, which for the equations of
motion [Eq. (10)] are:

a
� �
x � K0ax

� ε2
KV x

a3
x

a
� �
y
� K0ay

� ε2
KV y

a3
y

where εKV x and εKV y are the invariant transverse emittances
which at a waist [see Eq. (12)] are simply given by εKV x

�
axax � and εKV y

� ayay � .
If we project the KV distribution onto the (x  x �

) plane, we
obtain a uniform density of particles inside an ellipse of con-
stant area πεKvx. For an arbitrary beam distribution, the equa-
tions of motion, for the rms beam sizes, have the same form
as Eq. (12). This defines the rms-equivalent KV distribution
sizes as ax

� 2σx, ax �
� 2σx � , ay

� 2σy, and ay �
� 2σy � . Under

linear forces, a molecule remains on the same KV surface on
which it started, with the shape of the ellipse changing but its
volume remaining constant.

Since the non-linear forces inside a lens become stronger,
the further the molecule is from the central axis, lenses may be
evaluated by computing the increase in non-linear effects with
increasing beam size. For this we use nested KV distributions
of increasing volume, each of which is characterized by its
volume, VKV . The simulation results are then independent of
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FIG. 5: Emittance versus beam envelope size of the shell in the
Kapchinsky-Vladiminsky (KV) equilibrium beam distribution.

the characteristics of the initial beam and can be applied to
non-surface beam distributions.

2. beam survival

We calculate the survival of a 560 m/s methyl fluoride beam
in the J � 0 state, through a 30-m FODO lattice, as a function
of the decapole strength (a5). The lattice is described in sec-
tion IV C, and we assume that the beam is already matched
to the lattice. As molecular beam jet sources are usually axi-
symmetric, we take the emittance, εKV , to be the same in both
transverse planes. Then, the initial matched beam sizes and
divergences, for the π 
 3 phase-advance FODO cell, are:

amax
� ax

� � εKV βmax � 1 	 2
ax �
� � εKV βmax � 1 	 2

ay
� � εKV βmin � 1 	 2

ay �
� � εKV βmin � 1 	 2

where βmin
� 0 � 587 m and βmax

� 1 � 703 m. As β is indepen-
dent of the emittance, we use the initial maximum beam size
amax as our KV distribution size parameter :

VKV
� 1

2
π2ε2

KV
� π2a4

max

2β2
max

The relation between the beam size and the emittance is shown
in Fig. 5.

The trajectories were numerically integrated along the
FODO lattice using a 4th-order Runge-Kutta algorithm. We
take as lost those particles whose transverse displacement in
the beam transport line in x and/or y became too large. The
transported particles, which started on a zero-thickness KV-
surface, finished up on a smeared-out fuzzy one, producing
emittance growth and halo.

From the simulations, we found the fraction of the initial
methyl fluoride beam surviving as a function of position along
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FIG. 6: Calculated beam survival for 560 m/s methyl fluoride in the
J � 0 state in a 30 m-long FODO lattice constructed of (a) two wire
lenses or (b) optimized multipole lens with a5 � 0. In each case r0
= 6 mm and the central field, E0 = 3.2 MV/m. Survival is plotted
as a function of (KV) beam size. For the 100% beam survival, the
beam intensity scales as KV beam size to the fourth power (see text).
Consequently, the FODO lattice of optimized multipole lenses will
transport about a factor of ten more beam than the same FODO lattice
of two-wire field lenses.

the beamline. We did this for two different lens designs (two-
wire field lens and optimized multipole) and for selected ini-
tial KV beam sizes. The results are shown in Figs. 6 (a) and 6
(b).

For the two-wire field lens, the largest KV beam that can be
transmitted without loss is 1.4 mm. For the optimized multi-
pole lens the largest lossless KV beam is 2.5 mm. If the initial
phase-space density of the beams is approximately constant,
the relative beam intensity, is given by the ratio of the lossless
phase- space volumes. This is a factor of � 2 � 5 
 1 � 5 � 4 � 10 im-
provement by using the optimized multipole lenses in place of
the two-wire field lenses in this FODO lattice.

Figures 6 (a) and 6 (b) also show that most of the beam
losses occur in the first 5 m and by 30 m the losses are es-
sentially complete. This suggests that extending the beam
transport line to much longer distances will not further reduce
beam survival.

To find the most appropriate values of the lens decapole
strength, for other molecules, we also studied beam survival
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FIG. 7: Survival of 560 m/s monoenergetic beams through the 30 m
FODO lattice for a KV beam with amax � 2 � 5mm as a function of
decapole constant (a5). Results for a methyl fluoride at 3.2 MV/m
are shown as open squares, the limiting cases of very strong and very
weak electric field as open circles and filled diamonds respectively.

for the two limiting cases of strong electric field (linear Stark
effect) and weak electric field (quadratic Stark effect). A KV
beam size of amax

� 2 � 5 mm was used and the results, along
with the results for methyl fluoride, are shown in Fig. 7.

For the strong field limit, as well as for the methyl fluoride
example, we obtain the highest transmission for a5

� 0. In
the weak electric field limit the optimum value of a5 is shifted
to a5

� � 0 � 2, this nonlinearity in ∂E 
 ∂x compensating the
nonlinearity in ∂W 
 ∂E. Thus, an a5 near zero would be a
good choice for CsF molecules in low-lying rotational states,
and an a5 near -0.2 would be a good choice for ground-state
atoms.

E. Velocity dependence of the beam transmission

So far we have considered only a monoenergetic beam. To
look at the tolerance of the different lenses to energy devi-
ations, we calculated the transmission for initially identical
KV distributions but with different energies (560 m/s being
the matched velocity.)

The results are shown in Fig. 8, for KV beam size of amax
�

1 � 5 mm, for both the two-wire field lens and for the optimized
multipole lens. Both do quite well. At energies from 0.65
to 1.2 times the nominal energy of 640 K (velocity 560 m/s),
transmission in the FODO lattice, of two-wire field lenses,
is 50% or more of its maximum value. The FODO lattice
of optimized multipole lenses does even better, as we would
expect, since it has lossless transmission up to a KV size of
amax
� 2 � 5. One should note that Fig. 8 does not represent the

energy acceptance of a complete transport line, which will be
limited by the source and matching optics.
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FIG. 8: Calculated transmission, as a function of relative beam ki-
netic energy, of a beam of methyl fluoride in the J � 0 state through
a 30-m FODO lattice. The nominal energy is 640 K (560 m/s) and the
KV beam size is amax � 1 � 5 mm. Points for the FODO lattice using
two-wire field lenses and optimized multipole lenses (with decapole
constant a5 � 0) are shown as squares and circles, respectively.

F. Beam matching and point focusing

We complete the model transport line by adding matching
optics upstream and downstream of the FODO lattice. This
matches the source to the lattice and the lattice to the final
beam focus. The matching, in both cases, is achieved using a
doublet- and a triplet- lens configuration as shown in Fig. 2.
As the matching lenses require stronger focusing, producing
more non-linearities, we raise the lens scaling length in the
matching lenses to r0 = 12 mm. And since most of the beam
losses occur early in the FODO lattice, we shorten the lattice
to 15 m to reduce the computing time necessary for the simu-
lation. The beam envelope in x and y, and the placement of the
lenses, is shown in Fig. 9, for an initial beam which is close to
the linear focusing limit in the lenses.

For our example, of a 560 m/s beam of methyl fluoride in
the J � 0 state, we assume that the jet source has a very small
orifice and a skimmer of 1.5 mm diameter is placed 25 cm
upstream of the first lens. An angular spread of

�
3.3 mrad

is fixed by collimators (see Fig. 2). This gives an initial beam
emittance of 2.5 mm-mrad in both transverse planes, and a
maximum beam size of 2.1 mm in the FODO lattice. In addi-
tion, the initial beam is taken to have a Gaussian energy spread
of

�
10 % (rms). The calculated beam transport, through this

beamline, is 84% of the entering beam, the losses being due
to the energy spread. Thus, we can transmit and focus most
of the velocity distribution from the jet source. (If needed,
the beam can be focused, at the end, to an even smaller size.
However in this case, we have to increase the size of the beam
in the doublet/triplet lenses, where the non-linear forces will
produce emittance growth and beam halo. If we are not lim-
ited by the electric field strength, we can correct this by using
lenses with a larger scaling length.)

G. Transmitted intensity

If the characteristics of the initial molecular beam are
known, the transverse and longitudinal acceptances of the full
beam transport line may be used to calculate the beam inten-
sity at the final focus. As an example, consider the beamline
in section IV F, which has a skimmer radius of 0.75 mm and a

�
3.3 mrad angular acceptance. From the point of view of an

observer at the source, the entire beam transport line intercepts
the same solid angle as would a 2 mm diameter collimator, lo-
cated 0.3 m from the skimmer with no lenses. The intensity of
an unfocused beam at this location can often be calculated or
measured. From this, and a knowledge of the rotational state
population fraction and the velocity spread, we can estimate
the intensity at the final focus of the beamline.

For the methyl fluoride example, we assume a (seeded) jet
source beam temperature of 3.5 K. (This is based upon the
equations in Ref. [18] for a 0.0035 cm diameter source ori-
fice, a source pressure of 1 � 9 � 105 Pa (1400 torr) of Ar at a
reservoir temperature of 300 K, and a methyl fluoride seed of
5%. The source could be either pulsed or continuous.) The 3.5
K, results in a J � 0 population of about 30 %, based upon a
Maxwell Boltzmann distribution, and a kinetic energy spread
of 11.4% which implies a longitudinal acceptance of about 60
%.

Thus an intensity, equivalent to 18 % of a unfocused methyl
fluoride beam passing through a 2 mm dia. collimator 0.3 m
from the skimmer, would reach the final focus some 14.5 m
from the source. And since the beam transport line accep-
tances demonstrate transmission without loss, the same in-
tensity should also reach a final focus much further from the
source.

Finally, we note that much higher performance beam trans-
port lines can be designed. If one uses stronger electric fields,
shorter FODO cells, fills more of the beamline with focus-
ing elements, and increases the size of the final focus, most
of the solid angle from the skimmer can be accepted. Similar
measures would allow one to efficiently transport and focus
faster beams of molecules, such as those seeded in a helium
jet source.

V. APPLICATIONS

Improving alternating gradient transport and focusing will
make it easier to use molecules in strong-field seeking states
for experiments, for beam transport, or to focus molecules for
easier detection. In beam resonance experiments, molecules,
prepared in a strong-field seeking state, can be detected, after a
transition to a weak-field seeking state as a flop-in resonance.

The optimized multipole lenses can greatly reduce the prob-
lem of Majorana transitions[19, 20]. These are transitions that
arise because different mJ levels belonging to the same J are
degenerate in zero field. In very weak electric fields, a time-
varying component caused, for example, by the motion of the
molecule through the lens, can induce a transition to a differ-
ent mJ state with a very different Stark effect. This leads to
beam loss, or loss of signal and a large background in sensitive
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FIG. 9: Lens placement of a complete transport line with matching lenses and a 15-m FODO lattice (center line), and the calculated rms beam
envelope, in x and y, for 560 m/s beam of methyl fluoride in the J � 0 state. We model the beam from a skimmed jet source and focus it to
a 2 mm diameter spot. A schematic of the beam transport line is shown in Fig. 2. With a central field of 3.2 MV/m, scaling lengths of r0 =
6 mm for the FODO lattice lenses, and 12 mm for the matching lenses, the beam transport line has an acceptance of 2.5 mm - mrad in both
transverse planes. The longitudinal acceptance is about 84% for a � 10 % rms energy spread.

resonance experiments.
The optimized multipole lenses reduce this problem by al-

lowing one to have F and D lenses with their central electric
fields in the same direction. This is done by changing the
sign of a3, the hexapole strength (and a5) while leaving the
dipole strength (a1) unchanged. This eliminates field direc-
tion changes in going between F lenses and D lenses. If a
weak dipole field is added to the region between the lenses,
the molecules may never be in a rapidly changing weak field
region.

The problem of Majorana transitions will be greatest
for molecules in weak-field seeking states focused by pure
quadrupole and/or sextupole lenses. These lenses have a van-
ishing field at the center and rapid changes in the field direc-
tion at their entrances and exits [7]. The problem will be di-
minished if the molecules are focused in alternating gradient
fields using optimized multipole lenses with their central elec-
tric fields in the same direction and with alternating positive
and negative values of a3. These lenses have a non-vanishing
field everywhere and can be optimized for a quadratic Stark
effect by choosing � a5 � � � 0 � 2. Again a small dipole bias
field can be used between lenses.

The problem of Majorana transitions can be eliminated by
choosing the J � 0 state; which is non-degenerate, always
strong-field seeking, has the largest Stark effect of any rota-
tional level, and is highly populated in a cold jet source beam.

The J � 0 and other strong-field seeking states have unique
and useful properties that can be exploited in experiments.
Within a rotational level, J, the � mJ � � J states are strong-field
seeking. States that are strong-field seeking in weak fields
remain strong-field seeking in stronger fields, but weak-field
seeking states will become strong-field seeking in the limit of
strong fields. Thus, for strong field seeking states, there is no
restriction on the size of the electric field that can be used to
focus them. This is an advantage for molecules with small ro-
tational constants and large dipole moments where the weak
field-seeking states in low rotational levels become strong-
field seeking in modest electric fields. CsF (Fig. 1) and other

heavy alkali halides are good examples.
Long distance beam transport which can exceed 100 m or

more has a number of applications. Since monatomic car-
rier gasses, clusters, and many contaminants will not focus
through the beam transport line, it can be used to clean up a
beam. For hazardous and radioactive molecules, a long beam-
line allows one to separate the source material and reservoir
from the experiment and allows one to use radioactive detec-
tion in a lower background environment.

The long transit time (54 ms for the 30 m beam line in
our example) corrected, if necessary for the small longitudi-
nal velocity changes in the focusing elements, can be used for
time-of-flight measurements with pulsed sources or a beam
chopper. The different velocities will focus at slightly differ-
ent longitudinal positions which may be exploited for posi-
tion sensitive detection. Alternatively, by using a pulsed beam
and ramping the electric field in the (final focus) lenses, all
molecules may be brought to a focus at different times but at
the same position.

The long flight path may be useful for colinear laser ex-
citation of weak transitions. If the colinear laser excitation
is combined with time-of- flight measurement, the Doppler
spread from the velocity distribution may yield information
about the absorption profile. Long transit time also allows for
the decay of some long-lived states. Molecular beams may
be run in both directions to form a very long colliding beam
apparatus. The reservoir temperatures of the beam sources
may be adjusted to equalize the focusing strengths of differ-
ent molecules.
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